Labs

The FUEL Lab focuses on how natural resource reliance influences the well-being of human populations in developing countries. Rigorous research is conducted for the academic and policy communities in three thematic areas: environment and livelihoods; natural resource governance; and energy poverty. Members of the FUEL Lab combine research design and methods from applied economics, institutional analysis, environmental science, and policy analysis to address questions surrounding these three research themes.

The Soil and Agroecosystems Lab explores food system sustainability in both domestic and international contexts in order to understand how different agricultural production systems affect ecological and social outcomes. Their biophysical research focuses on soil nitrogen and carbon cycles and agroecosystem nutrient management, with particular attention to the role of legume nitrogen sources, cover crops, and perennials for improving ecosystem efficiency and sustainability. Their mixed-methods research seeks to identify leverage points for food system transformation toward sustainability, including understanding sociopolitical and economic factors at multiple scales that support transitions toward ecologically-based management.

This lab prepares samples of plants and soil for biochemical, molecular and isotopic analysis.

This laboratory houses several camera-equipped microscopes, which are used to count, identify, and measure aquatic organisms, including fish larvae, zooplankton, and Mysis collected from inland lakes and the Great Lakes, as well as an environmental chamber, fume hood, and a -80 freezer. Current projects include studies of the long-term dynamics of Great Lakes zooplankton; the role of Mysis in Great Lakes food webs; herniations in zooplankton; reasons for the Diporeia decline in the Great Lakes; interactions among zooplankton, zebra and quagga mussels, and fish; and effects of contaminants on larval fish and recruitment.

Research highlights

Do energy transitions co-evolve with urbanization? We examine energy access in rapidly urbanizing Yangon, Myanmar using a two-wave mixed-method observational study design involving households (N = 600) situated along a rural to urban gradient. Heterogeneity in urbanicity allows us to substitute space for time to understand energy transitions. We examine factors associated with access and reliability of grid infrastructure, and use of clean fuels. Qualitative interviews (N = 20) with urban households explore drivers and barriers of transitions to modern energy.

Electrification of delivery vehicles will play an important role in decarbonizing the transportation sector. As electricity-generating technologies vary regionally and temporally, where electric vehicles are deployed and when they are charged will determine the greenhouse gas (GHG) emissions and cost consequences of delivery vehicle electrification. We couple a vehicle charging model with a dataset that provides hourly projections of marginal electricity cost and marginal emissions factors across 134 electricity balancing areas in the United States.

Fisheries managers have increasingly adopted rights-based management (i.e., “catch shares” or “individual transferable quotas” [ITQs]) to address economic and biological management challenges under prior governance regimes. Despite their ability to resolve some of the symptoms of the tragedy of the commons and improve economic efficiency, catch shares remain controversial for their potentially disruptive social effects.

Environmental footprint analyses for China have gained sustained attention in the literature, which rely on quality EEIO databases based on benchmark input-output (IO) tables. The Chinese environmentally extended input-output (CEEIO) database series provide publically available EEIO databases for China for 1992, 1997, 2002, 2007, and 2012 with consistent and transparent data sources and database structure.

Increased E-commerce and demand for contactless delivery during the COVID-19 pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas (GHG) emissions for automated suburban ground delivery systems consisting of a vehicle (last-mile) and a robot (final-50-feet).

India relies on groundwater irrigation to produce staple grain crops that provide over half of the calories consumed by its over 1.3 billion people. While groundwater has helped India achieve grain self-sufficiency, aquifers have been overexploited across much of the country and its implications for crop production are unclear.