Skip to main content

Utility

  • Admissions
  • Exploring Grad School
  • Current Students
  • Community Impact and Engagement
  • Faculty + Staff
  • Alumni
Give
Intranet
Report Sexual Misconduct
Home

Main navigation

  • Academics
    • Master of Science
    • Master of Landscape Architecture
    • Doctoral (PhD)
    • Dual-Degree Programs
    • Graduate Certificate Programs
    • Undergraduate Program
    • Courses
    • Online Learning
  • Research + Impact
    • Sustainability Themes
    • PhD Profiles
    • Student Research
    • The Centers, Institutes + Initiatives
    • Faculty Profiles
    • Labs
  • Prospective Students
    • Why Michigan?
    • Application Information
    • International Students
    • Financial Aid + Tuition
    • Visit Campus
    • Faculty Profiles
    • Admitted Students
    • Exploring Graduate School
  • Student Services
    • SEAS and PitE Student Center
    • Career Services
    • Financial Aid
    • Academic Advising
    • Student Organizations
    • Student Development
    • Forms, Handbooks + Policies
    • Quick Links
  • News
    • Community Highlights
    • In the Media
    • Stewards Magazine
  • Events
    • Co-Sponsorship Form
    • Submit Event
    • Admissions Webinars
    • Gallery
  • About
    • Who We Are
    • SEAS Values
    • Collective Impact Committee
    • Leadership
    • Demographics
    • Faculty Profiles
    • Administrative Departments + Staff
    • Facilities + Locations
    • Community Impact and Engagement
    • Art & Environment Gallery
    • COVID-19
    • Land Acknowledgement
    • History
    • Email Sign-Up
Search search icon

Utility

  • Admissions
  • Exploring Grad School
  • Current Students
  • Community Impact and Engagement
  • Faculty + Staff
  • Alumni
Give
Report Sexual Misconduct
search icon Search

Master's Projects

Image
Masters Projects
  • Academics
  • Research + Impact
    • Sustainability Themes
    • PhD Profiles
    • Student Research
      • Master's Capstone Options
      • Master's Projects
      • Master's Thesis
    • The Centers, Institutes + Initiatives
    • Faculty Profiles
    • Labs
  • Prospective Students
  • Student Services
  • News
  • Events
  • About

Main navigation

  • Academics
  • Research + Impact
    • Sustainability Themes
    • PhD Profiles
    • Student Research
      • Master's Capstone Options
      • Master's Projects
      • Master's Thesis
    • The Centers, Institutes + Initiatives
    • Faculty Profiles
    • Labs
  • Prospective Students
  • Student Services
  • News
  • Events
  • About

Dynamic Pricing Tariffs for DTE's Residential Electricity Customers

United States
Project Description

Despite temporal changes in wholesale electricity prices, retail prices are typically constant throughout the day. To address this economic inefficiency, Detroit Edison, a subsidiary of DTE Energy (DTE), can introduce residential dynamic pricing rates to incent customers to shift load away from peak periods, at which time wholesale electricity prices are high. This paper estimates the financial and environmental impacts of implementing dynamic electricity pricing rates for residential customers within the Midwest Independent System Operator (MISO). Based on these estimates, we recommend that DTE pilot specific residential dynamic pricing rates, all of which may be suitable for wide-scale deployment.
We researched existing pricing programs that have been piloted throughout the country to determine which options present the most potential to reduce or shift peak load. In addition, we obtained cost estimates for enabling technology to be used in conjunction with these tariffs. We then constructed a dispatch model which simulates the MISO electricity market by using electricity supply and demand forecasts for 2010-2030. Applying residential peak load reduction and shifting estimates from previous pilots to the dispatch model, we calculate avoided capacity savings, avoided energy savings, and emissions impacts for various dynamic pricing programs. Specifically, we analyzed a Time of Use (TOU) tariff and TOU/Critical Peak Price tariff with and without enabling technology (smart thermostat and in-home display), as well as a TOU/Peak-time Rebate tariff. We investigate these tariffs using peak and critical-peak period window lengths ranging from four to eight hours.
There were three central results. First, deployment of demand response programs to a subset of residential customers with a four-hour peak window results in financial outcomes ranging from a net loss of $350 million to a net gain of $400 million. Second, enabling technology increases peak load reduction, but technology costs may exceed the savings of the increased load reduction. Third, the length of the peak window is an important driver of economic benefits; increasing the window length may enhance net economic benefits.

Year
2010
Project Status
Past Project
Client Organization
DTE Energy
Students Involved

Jongejan, Arie
Katzman, Brian
Leahy, Thomas
Michelin, Mark

Advisor(s)
Keoleian, Greg
Final Report
http://hdl.handle.net/2027.42/69236
Specializations
Environmental Policy and Planning
Sustainable Systems

I'M READY TO APPLYI WANT TO LEARN MORE

seas logo
University of Michigan School for Environment and Sustainability
Dana Building
440 Church Street
Ann Arbor, MI 48109
(734) 764-6453
Email us
facebook
twitter
instagram
linkedin
youtube
flickr
planet blue global impact logo

Footer

  • Contact us
  • Intranet
  • Contact Web Team
  • Email Sign-Up

© 2025 The Regents of the University of Michigan | Privacy Policy

Produced by Michigan Creative