The FUEL Lab focuses on how natural resource reliance influences the well-being of human populations in developing countries. Rigorous research is conducted for the academic and policy communities in three thematic areas: environment and livelihoods; natural resource governance; and energy poverty. Members of the FUEL Lab combine research design and methods from applied economics, institutional analysis, environmental science, and policy analysis to address questions surrounding these three research themes.

The Soil and Agroecosystems Lab explores food system sustainability in both domestic and international contexts in order to understand how different agricultural production systems affect ecological and social outcomes. Their biophysical research focuses on soil nitrogen and carbon cycles and agroecosystem nutrient management, with particular attention to the role of legume nitrogen sources, cover crops, and perennials for improving ecosystem efficiency and sustainability. Their mixed-methods research seeks to identify leverage points for food system transformation toward sustainability, including understanding sociopolitical and economic factors at multiple scales that support transitions toward ecologically-based management.

This lab prepares samples of plants and soil for biochemical, molecular and isotopic analysis.

This laboratory houses several camera-equipped microscopes, which are used to count, identify, and measure aquatic organisms, including fish larvae, zooplankton, and Mysis collected from inland lakes and the Great Lakes, as well as an environmental chamber, fume hood, and a -80 freezer. Current projects include studies of the long-term dynamics of Great Lakes zooplankton; the role of Mysis in Great Lakes food webs; herniations in zooplankton; reasons for the Diporeia decline in the Great Lakes; interactions among zooplankton, zebra and quagga mussels, and fish; and effects of contaminants on larval fish and recruitment.

Research highlights

Environmental footprint analyses for China have gained sustained attention in the literature, which rely on quality EEIO databases based on benchmark input-output (IO) tables. The Chinese environmentally extended input-output (CEEIO) database series provide publically available EEIO databases for China for 1992, 1997, 2002, 2007, and 2012 with consistent and transparent data sources and database structure.

Increased E-commerce and demand for contactless delivery during the COVID-19 pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas (GHG) emissions for automated suburban ground delivery systems consisting of a vehicle (last-mile) and a robot (final-50-feet).

India relies on groundwater irrigation to produce staple grain crops that provide over half of the calories consumed by its over 1.3 billion people. While groundwater has helped India achieve grain self-sufficiency, aquifers have been overexploited across much of the country and its implications for crop production are unclear.

The United Nations (UN) Sustainable Development Goals (SDGs) are a framework for national and international efforts to further economic development, end poverty, protect the planet, and ensure peace and prosperity for all people by 2030.

The extent of artificial night light and anthropogenic noise (i.e., “light” and “noise”) impacts is global and has the capacity to threaten species across diverse ecosystems. Existing research involving impacts of light or noise has primarily focused on noise or light alone and single species; however, these stimuli often co-occur and little is known about how co-exposure influences wildlife and if and why species may vary in their responses.